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Abstract
We give an overview of the role of Physics in Medicine and Biology in the
development of tomographic reconstruction algorithms. We focus on imaging
modalities involving ionizing radiation, CT, PET and SPECT, and cover a wide
spectrum of reconstruction problems, starting with classical 2D tomography in
the 1970s up to 4D and 5D problems involving dynamic imaging of moving
organs.

1. Introduction

This text offers a short celebration, for its 50th anniversary, of some great papers published
in a great journal. The story will be far from exhaustive: since its creation, 548 articles in
Physics in Medicine and Biology have had the word ‘reconstruction’ in the title or abstract,
and the selection below is strongly biased by our own interest and vision. In particular, we will
focus on the imaging modalities with ionizing radiation: CT, PET and SPECT. We apologize
in advance for omitting many important contributions either by ignorance or because of lack
of space, and we refer the reader to more systematic and comprehensive reviews of image
reconstruction (Natterer and Wubbeling 2001, Lewitt and Matej 2003).

2. A slow but brilliant start

The story of image reconstruction in Physics in Medicine and Biology begins shortly after the
introduction of the EMI scanner in 1972. Prior to this date only a few papers in the journal
reflected, from some distance, the rising intellectual activity occurring between the end of
the second world war and 1972 that produced the basic algorithms for two-dimensional (2D)
tomography: the direct Fourier reconstruction, the convolution-backprojection method, the
algebraic reconstruction techniques, etc. As is nicely described by Steve Webb in his book
‘From the Watching of the Shadows’ (Webb 1990), to which we refer for a complete story,
these developments have been the result of several largely independent research streams in the
1960s and 1970s: in radio-astronomy (R N Bracewell and A C Riddle), in electron microscopy
(R A Crowther, D J De Rosier and A Klug) and of course in the emerging radiological
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applications of tomography, both with radioisotopes (D E Kuhl, G Muehllehner, G L Brownell,
M E Phelps and E J Hoffman, J W Keyes, R J Jaszczak, and many others) (Kuhl et al 1965,
Muehllehner 1971, Brownell et al 1972, 1973, Phelps et al 1975, Keyes et al 1977, Jaszczak
et al 1977) and with x-ray transmission tomography that culminated in the 1979 Nobel prize
awarded to Cormack (1973) and Hounsfield (1973).

Prior to 1972, Physics in Medicine and Biology also featured only a few papers on the new
detector technologies that were going to enable transaxial tomography. Several contributions
on the sodium iodide gamma camera appeared however, most notably a review ‘Clinical
applications of a gamma camera’ by Mallard and Myers (1963) and a paper by Kuhl (1965)
on a converging collimator. The pinhole collimator3 has been around since the early years of
nuclear medicine (Copeland and Benjamin 1949, Mortimer et al 1954, Anger 1958) and on
this subject also we find papers that still make excellent reading today, amid blooming activity
on microSPECT with pinhole collimators (see the review by Meikle et al (2005)). The work
by D Paix (1967) (‘Pinhole imaging of gamma rays’), which investigated the effective area of
a pinhole and its sensitivity map, has often been repeated but much less frequently cited. There
are other examples of such concepts and ideas that appear, fade away and reappear decades
later in new technological clothes. Imaging of positron emitting radioisotopes appeared in
‘The Localization of positron sources by coincidence counting’ by Doust and Simons (1961),
but the first device with limited-angle tomographic capability described in Physics in Medicine
and Biology appeared in ‘A hybrid positron scanner’ by Burnham et al (1970), initiating a
long series of papers describing PET scanners, often with titles as ‘Performance evaluation of
the . . . PET tomograph’. In 1971, the same year he published ‘Section imaging by computer
calculation’ with R A Wetzel (in the Journal of Nuclear Medicine), Muehllehner (1971)
described ‘A tomographic scintillation camera’ based on a rotating slant hole collimator.

Most of these early works dealt with longitudinal tomography. This technique, which
can be defined as limited-angle 3D tomography, would soon be superseded by transaxial
tomography, and later by fully 3D tomography. However, as recently reviewed by Dobbins
and Godfrey (2003) there is still considerable interest in longitudinal tomography.

During the 1970s the number of papers on transaxial tomography in Physics in Medicine
and Biology grew, and the journal attracted contributions from some of the major authors
in the field, many from North America and many of whom are still active in the field. In
a remarkable paper, ‘Reconstruction of densities from their projections, with applications in
radiological physics’, Cormack (1973) compared different approaches to transaxial section
reconstruction and related how ‘it has recently come to the author’s attention that the problem
of determining a function in a plane from its line integrals was first solved by J Radon in
1917.’ Cormack also discussed the specificities of the application to transmission tomography
(both with x-rays and charged particles) and emission tomography. Concerning the latter, he
was fairly pessimistic: ‘using single gamma-ray scanning, practical difficulties make almost
useless the mathematical methods to be described below.’ One possible solution was to apply
an iterative reconstruction algorithm, based in those years on least-square estimation, as in
the paper by Budinger and Gullberg (1974) that already incorporated attenuation correction:
in their example, ‘the data are digitized in 64 × 64 frames, and profiles from 36 frames
corresponding to a transverse section 1.5 cm thick are manipulated by the Hewlett-Packard
2100A small computer system (HP-5407). Computation time is 25 min for 18 views using the
iterative least squares technique, and 1 min using a filtered back-projection technique. The
resolution of the reconstruction is such that 1.2 cm holes are easily detected.’ Also among
these early works were ‘Quantification of the depth effect of tomographic and section imaging

3 ‘collimateur sténopé’ in French.
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devices’ by Muehllehner and Hashmi (1972), and ‘Three-dimensional radionuclide imaging’
by Powell and Monahan (1972). Brookes and Di Chiro (1976) published a review article
in Physics in Medicine and Biology, ‘Principles of computer assisted tomography (CAT) in
radiographic and radioisotopic imaging’ that presented a fairly complete account of the state
of the art for analytical and iterative reconstruction techniques.

This section on the early days concludes nicely with the introduction of the term ‘sinogram’
by Edholm (1977), and later in Physics in Medicine and Biology by Edholm et al (1978) in
‘Transverse tomography with incoherent optical reconstruction.’ The word was promised a
brilliant fate: as of January 2006 a search engine finds close to 40 000 references to ‘sinogram’!
This word later inspired the similar naming of other sampling schemes in tomography such as
linograms, planograms and timograms.

3. Why an image?

Very early it became obvious that image reconstruction was more complex than the mere
problem of analytically inverting the Radon transform, and then discretizing the resulting
inversion formula. By the 1970s papers discussed the influence of sampling, resolution
and noise. A classic and much cited reference came from the Lawrence Berkeley National
Laboratory with the lengthy but well to the point title ‘The effects of a finite number of
projection angles and finite lateral sampling of projections on the propagation of statistical
errors in transverse section reconstruction’ by Huesman (1977), which gave the fundamental
relation

σρ

〈ρ〉 �
(

D3

nd3

)1/2
σI

〈I 〉 , (1)

where σρ/〈ρ〉 is the relative RMS error in the reconstructed value of a resolution element
(say, a pixel) of diameter d located at the centre of a uniform disc of diameter D. The disc is
reconstructed from n line integrals measured with a relative RMS error σI /〈I 〉. The key point
is the noise dependence on (D/d)3/2 rather than on (D/d) as would be expected by simply
counting the number of photons detected per resolution element. Note that the dependence
on (D/d)3/2 as described in equation (1) holds for linear algorithms such as the filtered-
backprojection method. Another set of papers in Physics in Medicine and Biology would later
present a similar analysis of the noise propagation by the maximum-likelihood expectation-
maximization algorithm (Barrett et al 1994, Wilson et al 1994). This analysis was itself
extended to Bayesian reconstruction by Wang and Gindi (1997).

Results in these papers and others, such as ‘The noise power spectrum in computed
x-ray tomography’ by Riederer et al (1978), slowly popularized the significance of the ill-
posedness of tomographic reconstruction. The concepts of ‘ill-posedness’ and ‘regularization’
are familiar to any PhD student today, but were mysterious to most in the 1970s. Some
time would be needed to clarify to the medical imaging community the link between the
mathematical works on regularization—notably by the Russian school of A Tikhonov—and
the empirical observation that the signal-to-noise ratio in the reconstructed image can be
much worse than in the measured data. For some time one would still find proposals such
as the idea of improving SPECT imaging by combining, on a two-head scanner, a high
resolution collimator (to get good spatial resolution) with a low resolution collimator (to get
good counting efficiency). An efficient way to explain the limitations of this type of approach
is to qualitatively translate equation (1) by ‘the information content of a detected photon is
roughly inversely proportional to the number of image pixels from which that photon could
have been emitted.’ This is not a theorem of course; it is deceptively difficult to reliably
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estimate (let alone optimize) the balance between resolution and noise, the balance between
relaxing collimation to improve counting efficiency and strengthening collimation to improve
resolution. Other examples of this dilemna include the Compton camera (see e.g. Zhang et al
(2004)), the multi-pinhole collimators for micro-SPECT (Meikle et al 2005), the rotating slat
collimator (e.g. Lodge et al (1995)) or the Fresnel zone plate camera (Dance et al 1975).

Using the word ‘optimize’ leads to another challenge of tomography: how should one
compare the ‘performance’4 of different imaging systems or reconstruction algorithms?
Already with other types of image data (in radar detection for instance) scientists have
recognized the often poor correlation between standard mathematical measures of image
quality (such as the RMS error) and the practical usefulness of the image to fulfil a specific
task such as lesion detection. This problem is particularly dramatic in medical imaging because
a radiologist extracts a large amount of information from an image, using a mental process that
cannot easily be modelled in a way that is both accurate and mathematically tractable. Even the
problem of modelling the mental process involved in searching a signal of unknown location
turns out to be a formidable challenge. For addressing this question too, Physics in Medicine
and Biology has played an important role. C E Metz of the University of Chicago was one
of the main investigators, his first contribution in this journal being ‘Evaluation of receiver
operating characteristic curves in terms of information theory’ with Goodenough (Metz and
Goodenough 1972), which described a task specific approach for evaluating the performance
of the combination imaging system-human observer. The work of H H Barrett at the University
of Arizona also played an important role in introducing these concepts to the community. A
good example is the paper in which Rolland et al (1991) investigate ‘whether the ideal observer
is a good predictor of human performance for systems described by long-tailed point spread
functions and whether deconvolution is helpful in such cases.’ Recent developments and a
good bibliography can be found in ‘Fast LROC analysis of Bayesian reconstructed emission
tomographic images using model observers’ by Khurd and Gindi (2005). See also the related
chapter in the book by Barrett and Myers (2004).

We finish this section with an anecdote. In 1983, attending his first conference on medical
imaging5, one of us (MD) was giving a talk based in part on ‘Methods for evaluation of
diagnostic imaging instrumentation’ by Shosa and Kaufman (1981). After that talk, H H
Barrett stressed how inappropriate the RMS was as an error measure. This remark opened
new horizons to a recent renegade from theoretical physics; medical imaging was much more
difficult than expected, and hence considerably more interesting.

Since images are so reluctant to undergo analysis, one could legitimately ask: do
we need images at all? To quote Jaffe’s provocative statement (Jaffe 1982), ‘By grossly
oversimplifying, one could argue that any diagnostic procedure relying on an image for
presentation to the human cognitive system is an admission of failure. [. . .] It is a testimony
to our gross lack of information that requires us to synthesize an image as the signal output
of our system.’ However, in the present state of artificial intelligence and pattern recognition
science, there is only a small number of image interpretation tasks for which the computer is
superior to the radiologist. An interesting perspective is the automatic, or at least computer-
aided, detection of micro-calcification in digital mammograms (with several papers in the
last ten volumes of Physics in Medicine and Biology). To date, the Intelligent Eye nicely
praised in the book of Gregory (1970) remains an essential component of the imaging
chain.

4 5569 papers in Physics in Medicine and Biology have the word ‘performance’ in the title or abstract, which is a
nice record for such an ill-defined word! The score is 4131 for ‘optimum’, ‘optimization’ or ‘optimal’.
5 The 8th biennial Conference on Information Processing in Medical Imaging organized by F Deconinck in Brussels.



Review R143

4. Beyond the voxel?

The representation of an image as a linear combination of voxel basis functions is omnipresent
in iterative reconstruction algorithms, and is usually taken for granted. Yet this representation
is not necessarily the best: first, the voxel basis does not even approximately diagonalize
the matrix that models the imaging system; second the discontinuous voxel contains high
frequency components that are spurious since they cannot be recovered due to the finite
spatial resolution of the detectors. These observations provided motivation for the study of
alternative image representations. Ideally a family of basis functions should, at the same
time, diagonalize the system matrix, allow a natural expression of the (implicit or explicit)
prior knowledge needed to regularize the reconstruction and of course also allow an efficient
numerical implementation.

The singular value (SVD) basis satisfies by definition the first goal, but is in general
ill-adapted in expressing local smoothness constraints. Additionally the SVD is difficult to
calculate. In ‘Cone-beam tomography with discrete data sets’ Barrett and Gifford (1994)
modelled the imaging system as a continuous to discrete mapping, and represented the image
using truncated Fourier basis functions. These functions achieve a rough diagonalization of the
system (recall the central section theorem!) and are better suited than singular (SVD) functions
or natural pixels to represent smoothness constraints. The wavelet-vaguelette decomposition
introduced by Donoho (1995) is another possible tool for solving this problem but so far has
been the object of relatively little attention in the reconstruction community.

The finite-element basis allows fitting of the image sampling to the object being
reconstructed, and may therefore provide an economic, adaptative representation. Well suited
to the solution of partial differential equations, finite elements are applied for example in
elastography (e.g., Doyley et al (2000)) and in magnetic resonance electrical impedance
tomography (e.g., Lee et al (2003)). Finite elements have also been applied (Brankov et al
2004) to the maximum-likelihood or Bayesian reconstruction from 2D gated cardiac SPECT
data, using an adaptative nonuniform mesh in which samples are placed most densely in areas
that contain significant detail.

To our knowledge, the only alternative basis that is applied for clinical emission or
transmission tomography is the ‘blob’ basis. ‘Blob’ is the nickname for a radially symmetric
Kaiser–Bessel window function introduced in tomography by R M Lewitt, first in the Journal
of the Optical Society of America, then in Physics in Medicine and Biology (‘Alternatives to
voxels for image representation in iterative reconstruction algorithms’ (Lewitt 1992)). The
blob has a limited support in image space and is essentially band-limited. The latter property
allows us to achieve an aliasing-free representation of the images with a number of blob
coefficients that is smaller than the number of coefficients needed when using voxels. This
advantage is partially offset by an increased computational complexity, and aliasing artefacts
may also be suppressed by using voxels with a finer grid (Zbijewski and Beekman 2004). The
benefits of using blobs are illustrated in Matej et al (1994) and Yendiki and Fessler (2004).

The representation of the image as a linear combination of a discrete set of basis functions
amounts to restricting the class of admissible solutions to the problem of tomographic
reconstruction. The choice of the basis functions is therefore closely linked with regularization.
An alternative approach to regularization is based on the variational methods, which define
the desired solution as one that minimizes a cost function. The cost function is the sum of two
terms. The first term is related to the data likelihood (e.g. a least-square functional in the case
of a Gaussian noise model) and its definition is straightforward. The second term, which aims
at penalizing images that are deemed a priori unlikely, should describe our prior knowledge on
the solution and is often defined in a Bayesian framework. In Physics in Medicine and Biology,
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the Bayesian concept was described and applied to a deconvolution problem as early as 1979
(Kennett and Prestwich 1979). Application to PET has been proposed by Mumcuoglu et al
(1996) and in many other papers since. One major issue here is the choice from a menagerie
of possible penalty functionals (quadratic, total variation, median root prior, etc). This choice
is (or should be) done as a function of the task for which the image is reconstructed.

5. 3D tomography

Since about 1980, Physics in Medicine and Biology has played a prominent role in the
development of fully 3D tomography. ‘Fully 3D’ refers to scanning geometries where the 3D
volume cannot be separated into independent transaxial sections, each of which is reconstructed
from a separate set of projection data. This is in contrast with ‘standard’ 2D tomography with
systems such as a single-row CT scanner, a SPECT scanner operated with a parallel-hole
collimator and a circular acquisition or a multi-ring PET scanner with annular collimators
(septa). All these systems separate the 3D image into independent sections by collimating
the radiation into transaxial planes. Especially in SPECT and PET, this collimation results in
an extremely poor (possibly unethical!) utilization of the radiation dose to the patient. By
relaxing collimation (or removing it altogether in PET), a ‘fully 3D’ acquisition significantly
improves dose utilization. Similarly, in CT, collimating the x-rays in a cone-beam rather than
a fan-beam leads to a more efficient utilization of the power of the x-ray source and thereby
to potentially faster imaging.

The ‘3D’ logo is trendy but the idea that tomography should be fully 3D is quite old:
one of the first tentative designs for a PET scanner was an arrangement of 32 NaI scintillators
built in 1960 at the Brookhaven National Laboratory. The nickname of this scanner, the ‘hair-
drier’, was suggestive of its ‘fully’ 3D geometry, which could not however be exploited in
those early days, both because of insufficient sampling and of the then lacunar understanding
of image reconstruction. Later G Muehllehner, following pioneering works by H Anger,
designed the first 3D PET scanner based on a pair of gamma cameras operated without any
collimators (Muehllehner et al 1976). This, and geometrically similar designs with multi-wire
proportional chambers at CERN, at the Lawrence Berkeley Laboratory and at Rutherford
Appleton Laboratory, led to a new challenge: the reconstruction of a function f (x, y, z) from
the measurement of a limited family of line integrals, i.e., the problem of inverting the 3D
x-ray transform with incomplete data. These data may be described as a set of 2D parallel
projections along a family of orientations �n ∈ � defined by some subset � ⊂ S2 of the unit
sphere S2. This subset � is determined by the geometry of the scanner6.

Only for the case of a scanner covering the full 4π solid angle (� = S2) was the
generalization from 2D tomography to 3D tomography straightforward. Many of the major
breakthroughs in this field were published in Physics in Medicine and Biology, notably ‘Three-
dimensional imaging in the positron camera using Fourier techniques’ by Chu and Tam (1977),
the generalization of the ramp filter by Colsher (1980), alternative filters for the handling of
truncated projections with a spherical positron emission tomograph (Ra et al 1982) and a fully
general method for three-dimensional filter computation by Schorr and Townsend (1983). The
journal also published an overview of these results by Defrise et al (1989). Even though these
algorithms were developed for scanners based on large planar detectors, the main application
after 1989 would be commercial multi-ring scanners operated without any collimator (‘septa’)
in the field-of-view.

6 The case of 2D tomography corresponds to � being just one equatorial circle on the sphere.
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In SPECT too, ‘fully 3D’ tomography became a popular topic in Physics in Medicine
and Biology, using either converging cone-beam collimators or pinhole collimators, both of
which provide divergent beam projections of the 3D tracer distribution. Again, the purpose is
to increase the sensitivity for a fixed resolution, but in SPECT the price to pay is a reduced
field-of-view. Jaszczak et al (1988) performed the first cone beam SPECT on the brain and
Gullberg et al (1991a, 1991b) performed the first cone beam SPECT on the heart. The first
pinhole SPECT imaging was reported by Palmer and Wollmer (1990) in Physics in Medicine
and Biology. A review was published by Gullberg et al (1992).

Geometrically, a scintigraphic image acquired with a diverging (cone-beam or pinhole)
collimator is similar to a radiograph acquired with a cone-beam x-ray system. Therefore,
the cone-beam filtered-backprojection algorithm developed by Feldkamp, Davis and Kress
for industrial non-destructive CT was applied with success to the reconstruction of SPECT
data acquired with diverging collimators. Such an analytic algorithm is not optimal however.
Since the early 1980s, it was clear that better image quality could be obtained using iterative
algorithms that model the Poisson statistics of the data and the various physical effects
that make the 3D x-ray transform a very rough approximation. As we have already seen
with Cormack’s pessimistic remark in section 2, it is in retrospect remarkable that clinically
exploitable SPECT images could be recovered at all using algorithms based on a line integral
model that so drastically idealizes reality. After 1990, an increasing fraction of the papers
dealing with image reconstruction in SPECT has been based on iterative algorithms, and
the transition would essentially be completed after the introduction of the ordered subset
expectation maximization algorithm (Hudson and Larkin 1994). Henceforth most efforts
in SPECT have been aimed at a better modelling of the physics of data acquisition during
iterative reconstruction, with many papers demonstrating the benefits for quantitative imaging
of modelling the collimator response function, the photon attenuation and the scatter in patient
tissues. Many of these works are at least partially based on Monte Carlo simulation, and in
the future SPECT will likely rely on a full Monte Carlo based reconstruction. This idea was
proposed by Floyd et al (1986) for 2D problems. Later, key contributions by the group of
F Beekman in Utrecht (Beekman et al 1999, de Jong and Beekman 2001) showed how to
accelerate Monte Carlo simulations using variance reduction techniques. These works and the
recent paper ‘Fully 3D Monte Carlo reconstruction in SPECT: a feasibility study’ by Lazaro
et al (2005) show that a fully 3D Monte Carlo reconstruction from SPECT data can be achieved
within 15–60 min. Incidentally, it is interesting to note that accurate system modelling in
SPECT is one of the issues in which the gap between proven technical feasibility and clinical
routine is the widest; in many nuclear medicine departments, routine clinical scans are still
processed without any of these corrections.

A similar story holds true for 3D PET, which underwent the same progressive transition
to iterative reconstruction, though at a slower pace because the larger and ever increasing data
size results in more severe computational requirements than in SPECT. This computational
constraint has motivated the development of hybrid reconstruction algorithms for 3D PET
(Kinahan et al 1997) that combine an analytical rebinning algorithm with a 2D ‘slice-
by-slice’ iterative reconstruction. This hybrid method is faster than a fully 3D iterative
reconstruction, and yet is sufficiently accurate for many types of clinical PET studies. A
rebinning algorithm can be seen as a data compression method in that it maps the large 3D
data set onto a smaller data set comprising one ordinary 2D sinogram for each transaxial slice
of the image. Several approximate or exact rebinning algorithms have been proposed (Daube-
Witherspoon and Muehllehner 1987, Lewitt et al 1994), the most popular one being the Fourier
rebinning algorithm (Defrise et al 1997) based on the frequency-distance relation of Edholm
et al (1986).
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Until 1990, medical applications of cone-beam CT were limited, in contrast to the
applications for industrial non-destructive testing. One can mention the ‘Dynamic Spatial
Reconstructor’ of the Mayo Clinic or the ‘Morphometer’ built at the LETI laboratory of the
French Commissariat à l’Energie Atomique (both in the 1980s). The latter development led
P Grangeat to propose in his PhD thesis in 1987 a key relation between divergent projections
and the 3D Radon transform. The introduction of helical scanning with a single row detector
revolutionized radiology after 1990 but did not really modify the nature of the data, which
remain 2D and are reconstructed, provided some axial interpolation, as a stack of independent
transaxial sections. Only with the introduction of multi-row scanners featuring a steadily
increasing axial field-of-view would fully 3D reconstruction in CT become a popular field of
research. Since about 1995, the journal has hosted many papers on analytic reconstruction
from truncated cone-beam projections, with helical CT as the major application (Kudo et al
1998). Among these the remarkable results of A Katsevich on exact reconstruction from
helical cone-beam CT data have stamped a major step forward and have triggered renewed
interest for 3D and also 2D (see section 8) reconstruction. In Physics in Medicine and Biology,
these results were first published in ‘Analysis of an exact inversion algorithm for spiral cone-
beam CT’ (Katsevich 2002) where the reference to his seminal 2002 paper (in SIAM Journal
of Applied Mathematics) can be found.

In x-ray CT the line integral model is a much better approximation than in PET and
SPECT, and the analytic algorithms remain at the forefront, if only because the large amount
of data in cone-beam CT still precludes routine utilization of iterative techniques such as
the algebraic reconstruction technique (ART). This is ironic, recalling that the EMI scanner
in 1972 was using an iterative algorithm. Nevertheless iterative algorithms for cone-beam
CT are likely to play an increasing role in the future. The maximum-likelihood algorithm
proposed by Lange and Carson (1984) for transmission tomography has first been applied
to 3D problems with modest sampling, such as the reconstruction of transmission maps for
cone-beam SPECT pioneered by Manglos (1992). Faster algorithms for transmission CT later
introduced by Erdogan and Fessler (1999) and by Beekman and Kamphuis (2001) might open
the way to improved cone-beam x-ray CT, especially for low-dose imaging where modelling
the Poisson statistics of the data is important.

We have only superficially sketched the recent history of 3D image reconstruction. This
story is well illustrated in Physics in Medicine and Biology by the proceedings of some of
the biennial International Conferences on Fully Three-Dimensional Image Reconstruction in
Radiology and Nuclear Medicine (the 1991, 1993, 1997, 2001 and 2003 proceedings are in
the journal). The first meeting organized in 1991 in Belgium was almost exclusively devoted
to nuclear medicine (PET and SPECT), even though the theory in some of the papers was
independent of the imaging modality (e.g. Yan and Leahy (1992)). Over the years the fraction
of papers on CT increased dramatically, and it exceeds 50% in the proceedings of the 2003
Conference (vol 49, no 11).

6. 4D and 5D tomography

Physics in Medicine and Biology has also played an important role in the growth of 4D and 5D
tomography. With the significant interest for time-dependent problems there has also arisen
some confusion about the terminology. In some cases, the term 4D tomography refers to the
reconstruction of motion fields from projection data acquired while the organ of interest is
deforming or moving. For example in CT, SPECT and PET several applications involve cardiac
and lung motion, which are often registered by means of some external ‘tracking’ signal. In
other cases the term 4D tomography refers to the estimation of tracer kinetic parameters from
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projection data acquired while the concentration of the tracer or contrast agent in an organ is
changing as a function of time. With 5D tomography there can be very little confusion since
5D refers to both the organ motion and the non-stationary bio-distribution of the tracer.

The 4D tomography of motion fields has found importance in the area of CT imaging
of lung, heart and other organs as well as radiotherapy of organs affected by respiratory and
cardiac motion. With the increase in the development of hybrid technologies such as PET-CT
and SPECT-CT there is a significant interest in 4D tomography of organ motion in order to
match the inconsistent timing resolution between the modalities. Probably the most significant
problem is that of respiratory motion. This affects both cardiac imaging and diagnosis of lung
tumours, especially tumours at the edge of the lung. Respiratory motion also affects therapy
planning for organs such as lung and liver. For PET-CT it is important to develop a method
for 4D respiration-correlated acquisition from both CT and PET scans in order to fuse images
from these modalities. An external tracking signal of the patient’s breathing can be obtained
by using either a thermometer in the breathing airflow of the patient (Wolthaus et al 2005),
a spirometer, a laser positioning system, a load sensor or a position-monitoring system using
two infrared reflective markers (Keall et al 2004, Vedam et al 2003). These devices have been
used with both diagnostic hybrid PET-CT scanners and hybrid radiotherapy-CT machines to
retrospectively sort the data according to the respiratory gating signal. There has also been
an effort to develop deformable registration between modalities since organs typically deform
in a non-rigid way ((Li et al 2006), see also the review ‘Medical image registration’ by Hill
et al (2001)). With the development of multislice CT scanners there is growing interest in
developing cardiac CT with the hope of eventually being able to image coronary arteries with
the quality of coronary angiography. Significant work is being put forward to use cardiac
gating to reduce the motion of coronary arteries. For example, scanner rotation speeds chosen
as a function of heart rate have been shown to reduce motion artefacts (Kachelriess et al
2000). Another example is the introduction of heart rate adaptive cardiac CT reconstruction
algorithms that retrospectively sort gated cardiac CT imaging data (Manzke et al 2005). Still
another interesting approach is to pre-compute a model of the 4D coronary artery motion field
from a priori information (Blondel et al 2004). For some time there has also been interest in
improving gated cardiac SPECT imaging (Lalush and Tsui 1998). It is expected that in the
future both respiratory and cardiac gating will be important for obtaining optimum cardiac CT
images and for merging mutual information between dual modalities.

The 4D tomography of tracer kinetics on the other hand has had significant impact on
PET and SPECT. There are two approaches to the tomography of tracer kinetics. The first
approach involves producing a dynamic sequence of three-dimensional reconstructions from
which time-activity curves are extracted and, if needed, further processed to estimate kinetic
parameters (Lawson 1999). The second, ‘fully 4D’, approach involves estimating the time-
activity curves or kinetic parameters directly from the projection data.

Publications related to tomographic estimation of time-activity curves directly from
projections first presented methods in which only the region-of-interest time-activity curves
were reconstructed without reconstructing the entire sequence of 3D volumes. In PET this is
fairly easy to do because the stationary ring detectors acquire a complete set of consistent data
for each sampled time interval. This approach was proposed for the filtered-backprojection
algorithm by Huesman (1984) in ‘A new fast algorithm for the evaluation of regions-of-interest
and statistical uncertainty in computed tomography’. To compensate for physical factors such
as attenuation and detector resolution, iterative algorithms that maximize a likelihood function
have to be used. Carson (1986) presented a method for estimating uniform activities in a set of
regions-of-interest assuming a Poisson distribution; Formiconi (1993) did the same assuming
a Gaussian distribution. A group at USC (Nichols et al 2002) later presented a method for
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estimating time-activity curves for regions-of-interest with cubic spline basis functions from
a consistent set of dynamic PET tomographic data.

For SPECT, the estimation of time-activity curves directly from projections is more
difficult because the tracer concentration distribution changes during the rotation of the
detectors (Links et al 1991). Original work to solve this problem was presented in Physics in
Medicine and Biology by Celler et al (2000). They presented a method called dSPECT that
reconstructs the dynamic data from a rotating gamma camera by constraining the kinetics to
either monotonically increase or decrease. Other work related to the handling of inconsistent
data in dynamic cardiac SPECT estimates time-activity curves as linear combinations of cubic
splines, derived directly from projection data (Reutter et al 2002). No constraints were placed
on the dynamics of the curves but a model of the projected region-of-interest was required.

Another approach to ‘fully 4D’ tomography aims at directly estimating the parameters
of the kinetic model from projection measurements. The goal in this active area of research
is to produce estimators with the lowest possible bias and variance from either consistent
PET or inconsistent SPECT data. It is assumed that the regions-of-interest are specified
and that the relation between the parameters of the compartment model and the dynamically
acquired projections can be expressed in a chi-square formulation (Huesman et al 1998).
Originally at the University of Michigan, Chiao et al (1994a, 1994b) estimated region-of-
interest kinetic parameters for a one-compartment model and estimated boundary parameters
for the regions from simulated transaxial PET measurements. They showed that biases of
estimates are reduced by including region-of-interest specification inaccuracy. Huesman
et al (1998) used hard boundary constraints and demonstrated bias improvement by estimating
kinetic parameters for a one-compartment cardiac perfusion model directly from cone-beam
SPECT projections. Kadrmas and Gullberg (2001) formulated the problem as a Bayesian
reconstruction for which both the time-activity curves and compartment model parameters
were estimated using the prior constraint that the time-activity curves fit a one-compartment
model.

A more general parameterization of the kinetics, independent of any particular
compartment model, is the tomographic estimation of characteristic curves. The spectral-based
approach builds on the early work of Cunningham and Jones (1993), who suggested replacing
the nonlinear problem of estimating the kinetic parameters of a model with the linear problem
of estimating the coefficients of a predefined spectrum of exponentially decaying factors.
Efforts were also made to calculate these coefficients directly from projections. This has been
done for two (Hebber 1997, Limber et al 1995) and for several spectral terms (Matthews et al
1997). In the former case, the fit of the parameters of a single exponential decay were used to
model fatty acid metabolism in the heart directly from simulated projections from a rotating
detector SPECT system. Variations of this work involve research into using factor analysis
of dynamic structures (FADS) to estimate characteristic time-activity curves that have some
physiological relevance (Sitek et al 2001).

Work in 5D tomography of motion fields that estimates both the motion and the changing
concentration of the tracer with time continues to push image reconstruction to new frontiers.
The group at the University of Massachusetts has extended the dSPECT method to obtain
dynamic reconstructions of the time variation of 99mTc-teboroxime in the heart from gated
cardiac SPECT data (Farncombe et al 2003). A group at MIT (Shi and Karl 2004) has taken
a different approach; they estimate the variation in the tracer concentration using level sets
to delineate boundaries of moving organs like the heart while including the variation in the
tracer concentration. 5D tomography faces the challenges of modelling both rigid body and
non-rigid body deformation simultaneously, combined with the modelling of a time varying
tracer concentration from tomographic projections. In the future this will have important
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applications in diagnostic medicine and in radiotherapy. Physics in Medicine and Biology is
an ideal forum for the dissemination of these works.

7. Links with other imaging modalities

This review focuses on the mainstream tomographic techniques that use ionizing radiations:
CT, PET and SPECT. An attractive feature of Physics in Medicine and Biology is that it covers
a wide spectrum of imaging techniques, and thereby allows a cross-fertilization between
research projects over different image reconstruction problems. A few examples are presented
here.

Though Physics in Medicine and Biology has not been a mainstream journal for MRI,
this field is well represented. Image reconstruction in MRI is closely related to standard
‘tomography’ in the case of projection reconstruction. Two early papers on reconstruction
from plane integrals by Lai and Lauterbur (1981), and by Taylor et al (1981) discuss
zeugmatography, proposed as a potential method ‘to improve the performance considerably,
and to obtain practical NMR zeugmatographic images of the human body with three-
dimensional resolution better than the slice thickness usually used in x-ray CT scanning.’
Projection imaging in MRI is still considered for some applications because of a good
robustness to motion artefacts. It might also be relevant for diffusion tensor imaging.

Proton transmission tomography was discussed in Cormack’s 1973 paper, as we saw, and
also in his paper ‘Quantitative proton tomography: preliminary experiment’ with Koehler
(1976). Experimental results are presented by Hanson et al (1982). This is a problem
of reconstructing from weighted line integrals, related to the generalized Radon transform
(another example is the attenuated Radon transform in SPECT). Proton tomography is relevant
for treatment planning with proton therapy. A different method for using protons for 3D
reconstruction is to use nuclear scattering, as proposed at CERN by Saudinos et al (1975).

Leaving the problems where the data are a good approximation of integrals of the
quantity of interest along straight lines, we find thermoacoustic tomography and its associated
reconstruction problem, which were recently investigated by Patch (2004). This relatively
well-conditioned inverse problem can be modelled as that of recovering a 3D image from its
integrals over a family of spheres.

As the dimension of the region of space probed by each data sample increases, the ill-
conditioning of the associated inverse problem increases in general as well. This is the case
with various reconstruction problems in biomedical optics (see the special issue edited by
Wang et al (2004)), impedance tomography and magnetoencephalography, which are all well
represented in the journal. These problems are best described by partial differential equations,
and the reconstruction is generally based on finite element or boundary element solvers for
the direct problem (which is far from trivial, in contrast to the case of the Radon transform).
Incorporation of prior knowledge on the solution is absolutely crucial with these methods.

8. Conclusion: the story is not finished

Twenty years ago, Natterer (1986) published ‘The Mathematics of Computerized
Tomography’. This book could be seen as marking the end of the exploration of 2D
tomographic reconstruction with analytic methods, after two extraordinarily productive
decades (or much more if we start with J Radon). Indeed, Natterer’s book gave a fairly
exhaustive account: inversion algorithms with full or limited data, sampling and stability
theorems, consistency conditions and already some results on 3D reconstruction. The
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dominant feeling then was that that chapter was as good as closed, and that the major avenues
of exploration would in the future be in investigating iterative reconstruction with statistical
algorithms, 3D reconstruction and of course the persistent problem of system modelling. After
all, the inversion of the 2D Radon transform is supposed to be a simple problem.

If there is one lesson science teaches us, it is that things rarely go as expected. Since 2000,
new results have significantly modified our understanding of limited data 2D reconstruction:
exact and stable analytical reconstruction of regions-of-interest has been demonstrated from
new classes of limited data sets that were previously assumed to be intractable. Once more,
Physics in Medicine and Biology is present with among others ‘A two-step Hilbert transform
method for 2D image reconstruction’ by Noo et al (2004), and ‘Exact image reconstruction on
PI-lines from minimum data in helical cone-beam CT’ by Zou and Pan (2004). An interesting
point is that these works rely on previous results by Hamaker et al (1980) and by Gelfand and
Graev (1991), the significance of which had been overlooked, probably because these results
were published in mathematical journals. This example illustrates the importance and the
difficulty of efficient communication between mathematics, physics and engineering.

Concluding with this description of the renewed interest for an old topic, analytic 2D
reconstruction, this text hopefully has provided the reader with a very lacunar, but enthusiastic,
view of a fascinating research field that spans from 2D to 5D problems.
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